Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel.
نویسندگان
چکیده
In the current study, we examined a panel of serially passaged glioblastoma xenografts, in the context of an intracranial tumor therapy response model, to identify associations between glioblastoma molecular characteristics and tumor sensitivity to the epidermal growth factor receptor (EGFR) kinase inhibitor erlotinib. From an initial evaluation of 11 distinct glioblastoma xenografts, two erlotinib-sensitive tumors were identified, each having amplified EGFR and expressing wild-type PTEN. One of these tumors expressed truncated EGFRvIII, whereas the other expressed full-length EGFR. Subsequent cDNA sequence analysis revealed the latter tumor as expressing an EGFR sequence variant with arginine, rather than leucine, at amino acid position 62; this was the only EGFR sequence variant identified among the 11 xenografts, other than the aforementioned vIII sequence variant. EGFR cDNAs were then examined from 12 more xenografts to determine whether additional missense sequence alterations were evident, and this analysis revealed one such case, expressing threonine, rather than alanine, at amino acid position 289 of the extracellular domain. This glioblastoma was also amplified for EGFR, but did not display significant erlotinib sensitivity, presumably due to its lacking PTEN expression. In total, our study identified two erlotinib-sensitive glioblastoma xenografts, with the common molecular characteristics shared by each being the expression of wild-type PTEN in combination with the expression of amplified and aberrant EGFR.
منابع مشابه
Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response.
PURPOSE The influence of epidermal growth factor receptor (EGFR) amplification on glioblastoma patient prognosis following definitive radiotherapy has been extensively investigated in clinical studies, and yet the relationship between EGFR status and radiation response remains unclear. The intent of the current study was to address this relationship using several EGFR-amplified glioblastoma xen...
متن کاملAssessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کاملMolecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with a mean survival of 15 months with the current standard of care. Genetic profiling efforts have identified the amplification, overexpression, and mutation of the wild-type (wt) epidermal growth factor receptor tyrosine kinase (EGFR) in ≈ 50% of GBM patients. The genetic aberration of wtEGFR is frequently accompanied by the ove...
متن کاملEvaluation of Tyrosine Kinase Inhibitor Combinations for Glioblastoma Therapy
Glioblastoma multiforme (GBM) is the most common intracranial cancer but despite recent advances in therapy the overall survival remains about 20 months. Whole genome exon sequencing studies implicate mutations in the receptor tyrosine kinase pathways (RTK) for driving tumor growth in over 80% of GBMs. In spite of various RTKs being mutated or altered in the majority of GBMs, clinical studies h...
متن کاملMammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells.
The epidermal growth factor receptor (EGFR) is commonly amplified, overexpressed, and mutated in glioblastoma, making it a compelling molecular target for therapy. We have recently shown that coexpression of EGFRvIII and PTEN protein by glioblastoma cells is strongly associated with clinical response to EGFR kinase inhibitor therapy. PTEN loss, by dissociating inhibition of the EGFR from downst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2007